
Xaverian Robotics Team – Programming
Department

How to
Robot
Programming explained by a “professional”

Written by: Michael Lachut (Class of 2025) – Co-Captain
and Director of Software

Publish Date: October 2023

Contents
Introduction...3

What is this guide?...3

More specifically, what will I learn?...3

Lastly, what will I need to begin this guide?...3

Prerequisites..4

Installing Android Studio..4

1 – GitHub..11

What is GitHub?...11

Creating a GitHub Account...12

Joining the Organization...12

Exploring the Organization...12

2 – Android Studio Basics...14

Downloading a Project from GitHub..14

What am I looking at?..16

Navigating the File Explorer...16

Looking at Our Code...17

Launching Code..18

Selecting Branches...19

3 – Java Basics..23

Introduction...23

Data Types..23

Creating a Variable...24

Methods – Creating and Using Them...24

Combining our Knowledge – Classes..26

Using Classes..26

4 – OpModes..28

1 / 33 How To Robot: Programming explained by a “professional”

What are OpModes?..28

The Construct Function..28

The Run Function...28

EXERCISE – Creating a blank OpMode..29

EXERCISE ANSWER...30

5 – Accessing Hardware Devices..31

What Hardware Devices are Available?...31

How do we access these?...31

2 / 33 How To Robot: Programming explained by a “professional”

Introduction

What is this guide?
This guide is my attempt at teaching people how to write some working code for
the robot. It will go over what software you will need, what languages you will
learn, and more importantly, you will learn how to be a mildly successful
programmer like me. My goal is to separate this guide into small bite-sized
chapters which can be read in less than 15 minutes.

More specifically, what will I learn?
You will learn the fine art of Android Studio, a software used by programmers
world-wide to write code for the billions of Android devices all around the world.
You will utilize what the JVM languages, or Java and Kotlin, to write, test, and fix
code for our robot.

Lastly, what will I need to begin this guide?
You will need…. nothing! The Mac or Windows computer that you use in your
day-to-day life will work fine, however you will need to clear up enough storage.
On Windows computers, generally 10 GB is fine, but for Macs it might be more.
You will also need to have basic knowledge on how our robot will work, such as
how motors and servos work, how different sensors can be combined, and how
the Control Hubs, Driver Stations, and Expansion Hubs interact with each other.

3 / 33 How To Robot: Programming explained by a “professional”

Prerequisites
Installing Android Studio
Installing Android Studio changes based on whether you are on a Mac or a
Windows computer, and I can’t write a guide for both, so instead I will just write a
guide for Windows. First thing you have to do is navigate to
developer.android.com/studio and click the “Download Android Studio” button.

4 / 33 How To Robot: Programming explained by a “professional”

http://developer.android.com/studio

Then, agree to the terms and conditions and click Download.

Then, when the download is done, run the file and click “Yes” on the security
prompt.

5 / 33 How To Robot: Programming explained by a “professional”

Then click “Next” in the installer, letting Android Studio keep all the default
options, until you get to this final page where you click “Install”.

Wait for the installer to finish and click “Next”, then “Finish”.

Now we need to do the first-time setup. When you see the menu to import
settings, check the “Do not import settings” box and click “OK”.

When prompted with the “Help improve Android Studio” popup, I recommend
you choose “Don’t send”, but it’s up to you.

6 / 33 How To Robot: Programming explained by a “professional”

Then, click next to begin choosing your settings.

Click the “Next” button again to proceed with the default settings.

7 / 33 How To Robot: Programming explained by a “professional”

When you are prompted to choose your theme, it all boils down to your personal
preference. Some people like light theme, but a common opinion that most
programmers share is that light mode can hurt your eyes after extended periods
of time. For that we recommend you choose dark theme.

8 / 33 How To Robot: Programming explained by a “professional”

Next it will ask you which SDK Components you want to install. I would
recommend you deselect the “Android Virtual Device” option because it tends to
waste delicate disk space and tends to use up your battery in the background.

9 / 33 How To Robot: Programming explained by a “professional”

Then click next again in the confirmation screen and then agree to the terms and
conditions.

Then click “Finish” once you are done agreeing to the terms and conditions. The
setup process will begin and now you can sit back and relax. Click “Finish” when
the installer is done.

10 / 33 How To Robot: Programming explained by a “professional”

1 – GitHub
What is GitHub?
GitHub.com is a website that we (and most people) use to collaborate on code.
However, it doesn’t work using the same way you may be used to as for
something on Google Docs or Slides. Instead of sharing each line of code
individually, every time you make some changes, let’s say you adjust some servo
values, you fix an error, or add a new feature, you do what’s called a commit.
Commits simply say what you changed and have a little message you can add to
help other people keep track of what commit changed what. Code is contained in
what are called repositories. Repositories (or “repos” for short) contain a project,
and, on your computer, you clone a repository to create a copy of it on your
computer and periodically you download or upload the commits you or other
people make. The version online is called the upstream repository and the copy
on your computer is the local repository. This allows for better collaboration than
what happens when you have 10 people on the same Google Doc. Also in
repositories are these things called branches which are used to separate different
versions of the same code so that each person who commits to a branch can be
sure that they won’t disrupt someone else.

11 / 33 How To Robot: Programming explained by a “professional”

https://github.com/

Creating a GitHub Account
Creating a GitHub account is very simple. Go to this link and create an account
using your preferred e-mail address and an easy-to-remember password. When
you are done and you are logged in, you should be at your home page, which will
look different for everyone, but will have the same layout.

Joining the Organization
To collaborate with the rest of the team, you will have to join the organization. To
do this, you will have to ask one of the coaches or another one of the experienced
programmers and they can invite you.

Exploring the Organization
Upon joining to the organization, you will see some
repositories on the left side of the home page. In the
screenshot which I attached, there are some ones that I
have made as well. If you click on the Show more button
then you can see all of your repositories. However, the
easiest way to see all repositories for an organization is
to visit this link:
https://github.com/XaverianTeamRobotics. Either way

12 / 33 How To Robot: Programming explained by a “professional”

https://github.com/XaverianTeamRobotics
https://github.com/signup

you chose, there is one main repository to focus on, FtcRobotController. This
contains the main code which is uploaded onto the Control Hubs to run the code
that we make.

13 / 33 How To Robot: Programming explained by a “professional”

https://github.com/XaverianTeamRobotics/FtcRobotController

2 – Android Studio Basics
Downloading a Project from GitHub
Upon starting up Android Studio once completing setup, you should get the menu
pictured below. If you don’t have it, you may have missed a step in the Installing
Android Studio section.

But let’s explain this menu. On the left sidebar you can see the name Android
Studio and the version. At the time of writing, the version is 2022.3.1, which has
the code name “Giraffe”. Below that are the options Projects, Customize, Plugins,
and Learn Android Studio. The only menu we care about for downloading a
project from GitHub is the Projects menu. In the Projects menu, you can see three
big buttons, New Project, Open, and Get from VCS. It’s important to know that

14 / 33 How To Robot: Programming explained by a “professional”

GitHub is what we call a Version Control System (or VCS). Now that I’ve put that
there, you may be able to infer that we want to click the Get from VCS option.
Once you click that option, you should get this menu.

Here you can put a URL to a special part of the project which is the .git file.
Every project has a .git file. To find it, take the URL of the repository and add
.git to the end. So, take the link
https://github.com/XaverianTeamRobotics/FtcRobotController and add
.git to the end, then put the new link in the URL field in Android Studio. Then
click Clone at the bottom of the screen and Android Studio will download the
project for you.

15 / 33 How To Robot: Programming explained by a “professional”

What am I looking at?

Here is the main screen when opening a project for the first time. The middle
screen is the code, and the left sidebar has the list of files. Along all the edges are
more “sidebars” that you can open to get more functionality. However, for the
most part, this layout is all that you will use. At the top of the screen are actions
that you can perform, like running the project, rebuilding code, or updating the
project from GitHub. At the very bottom, you may see something like Building
Gradle Project or Indexing library. Those are the running background
tasks. Whenever you launch the editor, run the project, or really do anything, the
background tasks needed will display down below.

Navigating the File Explorer
To find files, you need to know how
our project is organized. So, let’s look
at the explorer itself. There are four
main folders called modules. These
three modules are FtcRobotController,
PathVisualizer, and TeamCode.

16 / 33 How To Robot: Programming explained by a “professional”

FtcRobotController contains all of the code that you probably will not need to
edit. This module contains all of the internal code that makes the application
actually load the code that we make, but should not be changed under any
circumstances unless you know exactly what you are doing. PathVisualizer may
not have actually appeared for you because on my computer I may have a
different version of our code. The third and most important is TeamCode.
TeamCode is where our team stores our code, hence the name TeamCode.

In the TeamCode folder, you will see the following folders.
The following folders are named manifests, java, java
(generated), assets, res, and res (generated). I will quickly
describe what these folders contain.

 Manifests – This contains technical info so Android
knows what the contents of the module are

 Java – This folder contains all the Java code that we write
 Java (generated) – This folder contains all of the Java code that Android

Studio has generated automatically and generally should be left alone
 Assets, res, and res (generated) – These three folders all contain files and

other data that the app may need to achieve a desired function, however
most of these files are user added.

If some of these are missing, it may be something that just happens on your
computer. As always, ask someone else if you believe you messed something up
or something looks wrong. The most important folder is the java folder, so it is
absolutely critical to have it.

Looking at Our Code
Now that you know where our code is located, on Android Studio, let’s explore
how we keep our code clean and organized. Open the java folder.

Once it is open, you will see two more
folders. One is
com.xaverianteamrobotics.robottests
and the other is
org.firstinspires.ftc.teamcode. The first folder contains tests that allow us to

17 / 33 How To Robot: Programming explained by a “professional”

automatically ensure that a certain algorithm behaves as intended. The second
folder contains our actual code. Exploring the org.firstinspires.ftc.teamcode folder
shows us this:

Now we’re getting somewhere!
Believe it or not, we have entered the
space where we can find actual code!
It is organized into three sections:
features, internal, and opmodes. The
opmodes folder contains files called
OpModes. For those who are new to

the FTC competition, OpModes contain the code that actually makes the robot do
things. The features folder contains different functions that can be recycled
between OpModes. Examples of a feature include code for a drive train, an arm,
or a grabber. The internal folder contains all of the code that we made that make
everything happen behind the scenes.

Launching Code
Now that we know how to find code, let’s launch some sample code. At the top
right of Android Studio, you can find the “Action Bar”. It contains, well, actions.

Here is a quick breakdown from left to right:

 Run Actions
 The hammer icon: Build – Click to build the code, but don’t actually run it
 First drop-down: Action to run – By default it is TeamCode, meaning we

want to run the TeamCode module.
 Second drop-down: Target device – The device to run the code on
 Play Button: Run – Run the selected action on the selected device
 Replay Icon (grayed out): Re-run – Re-run the selected action on the

selected device

 The next five icons () are not necessary
 Stop Icon (grayed out): Stop the running code
 Git Actions

18 / 33 How To Robot: Programming explained by a “professional”

 Blue arrow: Update project – Download changes from the repository
 Green Check-mark: Commit – Commit any changes to the local copy of the

repository
 Green Arrow: Push – Upload any commits that are not on the upstream

repository
 Clock (grayed out): View history – See the history of the repository
 Backwards-facing arrow (grayed out): Rollback – Undo the changes to the

last commit
 Settings

 You can disregard the other options () as they don’t really
matter that much.

Now that we know how the action bar works, if you connect a Robot Controller
and make sure that it is powered and turned on, once the light turns green you
will see it in the target device drop-down. Once you do, click the play button, and
at the bottom right you should see the following message:

This message means that your computer is now building the project to get it
ready. It may take a while, sometimes up to 2 minutes. After it’s done, it will
change to “Install”, and after 30 seconds you should see a notification saying
“Launch Succeeded”. Once you see that, the launch has….succeeded.

Selecting Branches

At the bottom right of Android Studio, you can see your selected branch. For me it
says “dev/muke” but for you it should say “master”. Click on it to open up the
branch menu.

19 / 33 How To Robot: Programming explained by a “professional”

The branch menu displays each
of the branches, separated by
two categories: Local Branches
and Remote Branches. Remote
Branches do not exist on your
computer, instead only existing
on GitHub, which is the
“remote” server in this case.
Local Branches exist on your
computer, and most often times
correspond to a Remote Branch.
For example, the local branch
“master” corresponds to the
remote branch “origin/master”.

Upon clicking on any of the currently active branch, you get these options:

Here are the options explained:

20 / 33 How To Robot: Programming explained by a “professional”

• New Branch from ‘…’: Create a new local branch using the current branch
as the “template”. The new branch will be an exact copy of the current.

• Show Diff with Working Tree: Don’t worry about this

• Update: Receive any commits from the corresponding remote branch, if
one exists. A blue arrow facing downwards next to this button indicates
there is something to update.

• Push: Upload any commits to the corresponding remote branch, or create a
remote branch if one doesn’t exist. A green arrow facing upwards next to
this button indicates that commits are ready to be pushed.

• Rename: Rename the branches

The set of options are different if you select a local branch different to the one
you are working on.

• Checkout: Set the branch to be the currently active branch. Note that any
changes made in one branch will not carry over to another

• Checkout and Rebase onto ‘...’: Do not worry about this

• Compare with ‘…’: Show the difference in commits between the currently
active branch and the selected branches

• Rebase ‘…’ onto ‘…’: Do not worry about this

• Merge ‘…’ into ‘…’: Copy any commits from the currently active branch to
the selected branch.

21 / 33 How To Robot: Programming explained by a “professional”

• Delete: Deletes the branch

The options for a remote branch have many more options. However, the only
option you should use is “Checkout” to reduce the possibility of messing
something up. Note that “Checkout” in this instance would create a copy of the
branch as a Local Branch before setting it as your active branch.

So what you should do is create a new branch from master, naming it “dev/” and
your name, so “dev/tom” or “dev/colin” are some examples.

22 / 33 How To Robot: Programming explained by a “professional”

3 – Java Basics
Introduction
You may have many questions, like “What is a Java?”, “How do I Java?”, or “How
does this guy know all the questions I’m asking?”. Java is not that simple. Java is
based around the mentality that everything is an object, or a philosophy known as
Object-Oriented Programming. Think of an object like your phone. Literally, your
phone is an object. Your phone has different apps. Your phone also has different
properties like a phone number and a serial number. In Java, we could consider
your phone as a class, which is a type of object. If your phone is a class, then the
apps on it are methods and your phone number would be a field. Methods, like
the apps on your phone, contain pieces of code that you can run. Fields are
another way of saying variable, or some number or value that is necessary for a
method. For those math guys, methods would be like f (x)=x2, whereas a field
would be x=5. Also, when writing, at the end of every sentence you type, you
must put a period at the end. In Java, it’s similar. You have to put a semicolon (;)
at the end of every line otherwise Java will think that you never ended your
“sentence”.

Data Types
Java is not just about numbers. To separate numbers from letters, variables have
things called types. Whenever you declare a variable, you need to declare what
type it is. This prevents you from doing something adding a number to a letter, or
doing other things that could cause an error. A type can either be what is called a
primitive or it can be a class. Primitives are just a fancy way of saying a class that
Java has built in for us. Some examples are:

 int – An integer (any number between -∞ and +∞ without a decimal point)
 float – Any number with a decimal point
 double – Same as float, but can do basic arithmetic better
 boolean – True or False
 String – A string of letters

We can also use our custom classes as data types, and use instances of those
classes as the value for our variables. If you use the phone analogy from the

23 / 33 How To Robot: Programming explained by a “professional”

previous section, think of the model of phone you have as a type. For example, I
have a Google Pixel 7. If Google Pixel 7 is the “type” of our “variable” then my
specific phone would be in instance of that type. Let’s also say that you gave me
an iPhone 14 and told me that it was my phone. I would give you an error because
I can’t have an iPhone 14 because I only want a Google Pixel 7.

Creating a Variable
With that explanation out of the way, now would be a good time to show you
how to create a variable. There are two ways we can do it. First, we can declare
the variable and assign it a value all in one line, or we can just declare it and
assign a value later. When we create a variable, we need to think about three
things: 1) What will the type of my variable be? 2) What will I name my variable?
3) Do I want to assign it a value right away? Once you know the answers to all
these three questions, we can create a variable. I asked those questions in a
specific order, because let me answer it like this “I want to create a variable with
the type of double that is named myVariable and set it equal to a value of 11.7”.
Notice what I put in bold. If we put them together, we get how to declare a
variable:

double myVariable = 11.7;

That was easy! Now, let’s create another one, but these time, we won’t assign a
value.

double myVariable;

Creating variable is very easy and is one of the basic building blocks to learn Java,
so it’s important to understand the process early on.

Methods – Creating and Using Them
Methods (sometimes called functions) allow us to create blocks of code which can
be reused in many places without having to copy and paste. This allows us to
change some problematic code in one place. Methods have 4 different properties
you can change, which are the access modifier, return type, name, and
parameters. The access modifier tells us where we can access this function. It can
either be public or private. Public means we can access this function anywhere.

24 / 33 How To Robot: Programming explained by a “professional”

Private prevents anything outside of the current class from accessing this method.
The return type allows a method to return a variable. For example, say we had a
function that added 2 and 1. The return type would be int, because 2 and 1 are
whole numbers. If we don’t want to return anything, then we can put void as the
return type. Parameters are like variables. They allow a method to take in a value.
So, we can say that we want to create a function that triples a parameter. Let’s
create an example of that function below:

public int triple(int x) {

return x * 3;

}

Let’s go over that. First, we set the access modifier to public. Next, we specified a
return type of int. Then we decided to name it triple. We gave it the parameter x
with type int, and then we return triple of x. But how can we use this function? It
is very simple, all we must know is the name, what parameters it needs, and what
it returns.

int myVariable = triple(3);

We can also give a variable as a parameter:

int myNumber = 3;

int numberTripled = triple(myNumber);

In this case, numberTripled will be 9, because 3 tripled is 9.

Let’s make a function that has no return type:

public void doNothing() {

}

Now this function may seem useless, but functions that return void can be used to
do things like save something in a file, print out a message, or drive a motor to a
certain power.

25 / 33 How To Robot: Programming explained by a “professional”

Combining our Knowledge – Classes
Classes are the last thing that you need to learn before we can make our first
OpMode. Classes are like methods. We can provide them with an access modifier
and a name, but in the place of a return type we just put the word “class”. Here is
how we define one.

public class MyClass {

}

What we’ve done is we created a class that is public (we can use it anywhere) and
named it MyClass. It is important to note two things about naming classes. First,
we must make sure that the name of the class matches the name of the file. Also,
classes cannot begin with a number, math operator (+, -, =, etc.), hyphen (-), or
underscore (_). But right now are class does absolutely nothing besides take up
space on our computers. But let’s make add one method to our class, specifically
the triple method we made earlier. To add it to our class, we simply add the
method within the two curly braces, like so.

public class MyClass {

public int triple(int x) {

return x * 3;

}

}

To use this method, we have to do two things. First, create an instance of the
class, then call the method.

Using Classes
Image you are trying to call someone on a phone. Let’s image a phone as a class
with one method: call. You can’t call someone on a phone that doesn’t exist, so
you need to get a phone. In Java, we can create an instance of a class using the
keyword new. So in our example class we made above, we could create a new
instance with this snippet of code:

26 / 33 How To Robot: Programming explained by a “professional”

new MyClass();

What we did here is say we want to create a new instance of MyClass. We will
explain later why the two parentheses at the end are needed.

But wait! How do we store this class in a variable? Easy. MyClass can be used as
the type of a variable, so we could have this variable to store our precious
instance of the class.

MyClass myClass = new MyClass();

Here Java breaks this statement down into 3 basic parts:

• We create a variable named myClass

• This variable has a type of MyClass

• We want to store a new instance of MyClass in the variable.

We can then call our function like this:

int tripledNumber = myClass.triple(3);

27 / 33 How To Robot: Programming explained by a “professional”

4 – OpModes
Excerpts taken from online documentation

What are OpModes?
OpModes, short for OperationModes, are the starting points of the program.
There can be as many as one desires, and are selected from the driver station.
They are defined in the TeamCode module in the opmodes folder. They are
defined as a class that extends OperationMode and either implements
TeleOperation or AutonomousOperation, depending on whether or not the code
should be run in teleop or autonomous.

OperationModes consist of two main functions: construct() and run(). The
construct() function is called once when the OperationMode is selected and the
user pressed Init button the Driver Station.

The run() function is called repeatedly once the user presses the Play button until
the user presses the Stop button.

See a blank sample on our online documentation

The Construct Function
The construct function in an OpMode serves as a “getting ready” phase. Here you
might want to set any servos to their starting position, set the values of some
variables, start the camera’s visual processing, and much more. The idea is it
should contain anything you want to do once before the game actually starts.

The Run Function
The run function in an OpMode is the actual “meat” of the OpMode. The run
function should follow a “short but sweet” mentality in that it shouldn’t take too
long to run. If the function never quits, then background tasks can’t be run and

28 / 33 How To Robot: Programming explained by a “professional”

https://robotics.xbhs.net/getting-started/OpModes#example-operationmode
https://robotics.xbhs.net/getting-started/OpModes

the app will crash. To avoid this, we avoid adding any loops that would last
forever.

EXERCISE – Creating a blank OpMode
Your task is to create a blank OpMode named MyOpMode, based off of the
sample above. The answer will be on the next page if you are stuck.

-----------------SOLUTION ON NEXT PAGE-----------------

29 / 33 How To Robot: Programming explained by a “professional”

EXERCISE ANSWER
First we need to write the first line of the class, often called the header.

public class MyOpMode extends OperationMode implements
TeleOperation {

This indicates we want to create a class named MyOperationMode which extends
from OperationMode and is a TeleOperation.

Next we need to add our construct and run functions.

 public void construct() {

 }

 public void run() {

 }

Here is the whole thing.

public class MyOperationMode extends OperationMode implements
TeleOperation {

 public void construct() {

 }

 public void run() {

 }

}

30 / 33 How To Robot: Programming explained by a “professional”

5 – Accessing Hardware Devices

What Hardware Devices are Available?
The hardware devices available include but are not limited to:

• Motors

• Servos

• Controllers

• Distance Sensors

• Cameras

• Color Sensors

• etc.

How do we access these?
There is a central class called Devices that can be used to access these devices.

Check out the following sections on our online documentation.

• https://robotics.xbhs.net/apis/Gamepads

• https://robotics.xbhs.net/apis/Servos

• https://robotics.xbhs.net/apis/motors

Because the Gamepads, servos, and motors are all static in the Devices class, we
can access them without creating an instance of Devices.

So to access a button on a gamepad you can do:

Devices.gamepad1.getA();

The same thing applies to axes:

Devices.gamepad1.getLeftStickX();

Note that for the face buttons on the controller (A, B, X, Y), you can use either
Xbox-style button names or PlayStation-style button names.

31 / 33 How To Robot: Programming explained by a “professional”

https://robotics.xbhs.net/apis/motors
https://robotics.xbhs.net/apis/Servos
https://robotics.xbhs.net/apis/Gamepads

To set the value to a motor you can use:

Devices.motor0.setPower(100);

Where the 0 in “motor0” represents the port number of the motor, and the “100”
represents the power level to set the motor to. The power can be between -100
and 100, where 0 means no motion.

--------------------WORK IN PROGRESS--------------------

VISIT robotics.xbhs.net FOR FURTHER READING

32 / 33 How To Robot: Programming explained by a “professional”

http://robotics.xbhs.net/

	Introduction
	What is this guide?
	More specifically, what will I learn?
	Lastly, what will I need to begin this guide?

	Prerequisites
	Installing Android Studio

	1 – GitHub
	What is GitHub?
	Creating a GitHub Account
	Joining the Organization
	Exploring the Organization

	2 – Android Studio Basics
	Downloading a Project from GitHub
	What am I looking at?
	Navigating the File Explorer
	Looking at Our Code
	Launching Code
	Selecting Branches

	3 – Java Basics
	Introduction
	Data Types
	Creating a Variable
	Methods – Creating and Using Them
	Combining our Knowledge – Classes
	Using Classes

	4 – OpModes
	What are OpModes?
	The Construct Function
	The Run Function
	EXERCISE – Creating a blank OpMode
	EXERCISE ANSWER

	5 – Accessing Hardware Devices
	What Hardware Devices are Available?
	How do we access these?

 / 	How To Robot: Programming explained by a “professional”

		Written by: Michael Lachut (Class of 2025) – Co-Captain and Director of Software

Publish Date: October 2023

		Xaverian Robotics Team – Programming Department

		How to Robot

		Programming explained by a “professional”

Contents

Introduction	3

What is this guide?	3

More specifically, what will I learn?	3

Lastly, what will I need to begin this guide?	3

Prerequisites	4

Installing Android Studio	4

1 – GitHub	11

What is GitHub?	11

Creating a GitHub Account	12

Joining the Organization	12

Exploring the Organization	12

2 – Android Studio Basics	14

Downloading a Project from GitHub	14

What am I looking at?	16

Navigating the File Explorer	16

Looking at Our Code	17

Launching Code	18

Selecting Branches	19

3 – Java Basics	23

Introduction	23

Data Types	23

Creating a Variable	24

Methods – Creating and Using Them	24

Combining our Knowledge – Classes	26

Using Classes	26

4 – OpModes	28

What are OpModes?	28

The Construct Function	28

The Run Function	28

EXERCISE – Creating a blank OpMode	29

EXERCISE ANSWER	30

5 – Accessing Hardware Devices	31

What Hardware Devices are Available?	31

How do we access these?	31

Introduction

What is this guide?This guide is my attempt at teaching people how to write some working code for the robot. It will go over what software you will need, what languages you will learn, and more importantly, you will learn how to be a mildly successful programmer like me. My goal is to separate this guide into small bite-sized chapters which can be read in less than 15 minutes.

More specifically, what will I learn?You will learn the fine art of Android Studio, a software used by programmers world-wide to write code for the billions of Android devices all around the world. You will utilize what the JVM languages, or Java and Kotlin, to write, test, and fix code for our robot.

Lastly, what will I need to begin this guide?You will need…. nothing! The Mac or Windows computer that you use in your day-to-day life will work fine, however you will need to clear up enough storage. On Windows computers, generally 10 GB is fine, but for Macs it might be more. You will also need to have basic knowledge on how our robot will work, such as how motors and servos work, how different sensors can be combined, and how the Control Hubs, Driver Stations, and Expansion Hubs interact with each other.

PrerequisitesInstalling Android StudioInstalling Android Studio changes based on whether you are on a Mac or a Windows computer, and I can’t write a guide for both, so instead I will just write a guide for Windows. First thing you have to do is navigate to developer.android.com/studio and click the “Download Android Studio” button.

Then, agree to the terms and conditions and click Download.

Then, when the download is done, run the file and click “Yes” on the security prompt.

Then click “Next” in the installer, letting Android Studio keep all the default options, until you get to this final page where you click “Install”.

Wait for the installer to finish and click “Next”, then “Finish”.

Now we need to do the first-time setup. When you see the menu to import settings, check the “Do not import settings” box and click “OK”.

When prompted with the “Help improve Android Studio” popup, I recommend you choose “Don’t send”, but it’s up to you.

Then, click next to begin choosing your settings.

Click the “Next” button again to proceed with the default settings.

When you are prompted to choose your theme, it all boils down to your personal preference. Some people like light theme, but a common opinion that most programmers share is that light mode can hurt your eyes after extended periods of time. For that we recommend you choose dark theme.

Next it will ask you which SDK Components you want to install. I would recommend you deselect the “Android Virtual Device” option because it tends to waste delicate disk space and tends to use up your battery in the background.

Then click next again in the confirmation screen and then agree to the terms and conditions.

Then click “Finish” once you are done agreeing to the terms and conditions. The setup process will begin and now you can sit back and relax. Click “Finish” when the installer is done.

1 – GitHubWhat is GitHub?GitHub.com is a website that we (and most people) use to collaborate on code. However, it doesn’t work using the same way you may be used to as for something on Google Docs or Slides. Instead of sharing each line of code individually, every time you make some changes, let’s say you adjust some servo values, you fix an error, or add a new feature, you do what’s called a commit. Commits simply say what you changed and have a little message you can add to help other people keep track of what commit changed what. Code is contained in what are called repositories. Repositories (or “repos” for short) contain a project, and, on your computer, you clone a repository to create a copy of it on your computer and periodically you download or upload the commits you or other people make. The version online is called the upstream repository and the copy on your computer is the local repository. This allows for better collaboration than what happens when you have 10 people on the same Google Doc. Also in repositories are these things called branches which are used to separate different versions of the same code so that each person who commits to a branch can be sure that they won’t disrupt someone else.

Creating a GitHub AccountCreating a GitHub account is very simple. Go to this link and create an account using your preferred e-mail address and an easy-to-remember password. When you are done and you are logged in, you should be at your home page, which will look different for everyone, but will have the same layout.

Joining the OrganizationTo collaborate with the rest of the team, you will have to join the organization. To do this, you will have to ask one of the coaches or another one of the experienced programmers and they can invite you.Graphical user interface, text, application, chat or text message

Description automatically generated

Exploring the OrganizationUpon joining to the organization, you will see some repositories on the left side of the home page. In the screenshot which I attached, there are some ones that I have made as well. If you click on the Show more button then you can see all of your repositories. However, the easiest way to see all repositories for an organization is to visit this link: https://github.com/XaverianTeamRobotics. Either way you chose, there is one main repository to focus on, FtcRobotController. This contains the main code which is uploaded onto the Control Hubs to run the code that we make.

2 – Android Studio BasicsDownloading a Project from GitHubUpon starting up Android Studio once completing setup, you should get the menu pictured below. If you don’t have it, you may have missed a step in the Installing Android Studio section.

Graphical user interface, application, Teams

Description automatically generated

But let’s explain this menu. On the left sidebar you can see the name Android Studio and the version. At the time of writing, the version is 2022.3.1, which has the code name “Giraffe”. Below that are the options Projects, Customize, Plugins, and Learn Android Studio. The only menu we care about for downloading a project from GitHub is the Projects menu. In the Projects menu, you can see three big buttons, New Project, Open, and Get from VCS. It’s important to know that GitHub is what we call a Version Control System (or VCS). Now that I’ve put that there, you may be able to infer that we want to click the Get from VCS option. Once you click that option, you should get this menu.

Here you can put a URL to a special part of the project which is the .git file. Every project has a .git file. To find it, take the URL of the repository and add .git to the end. So, take the link https://github.com/XaverianTeamRobotics/FtcRobotController and add .git to the end, then put the new link in the URL field in Android Studio. Then click Clone at the bottom of the screen and Android Studio will download the project for you.

What am I looking at?Text

Description automatically generated

Here is the main screen when opening a project for the first time. The middle screen is the code, and the left sidebar has the list of files. Along all the edges are more “sidebars” that you can open to get more functionality. However, for the most part, this layout is all that you will use. At the top of the screen are actions that you can perform, like running the project, rebuilding code, or updating the project from GitHub. At the very bottom, you may see something like Building Gradle Project or Indexing library. Those are the running background tasks. Whenever you launch the editor, run the project, or really do anything, the background tasks needed will display down below.

Graphical user interface, text, application

Description automatically generatedNavigating the File ExplorerTo find files, you need to know how our project is organized. So, let’s look at the explorer itself. There are four main folders called modules. These three modules are FtcRobotController, PathVisualizer, and TeamCode. FtcRobotController contains all of the code that you probably will not need to edit. This module contains all of the internal code that makes the application actually load the code that we make, but should not be changed under any circumstances unless you know exactly what you are doing. PathVisualizer may not have actually appeared for you because on my computer I may have a different version of our code. The third and most important is TeamCode. TeamCode is where our team stores our code, hence the name TeamCode.

Graphical user interface, application

Description automatically generatedIn the TeamCode folder, you will see the following folders. The following folders are named manifests, java, java (generated), assets, res, and res (generated). I will quickly describe what these folders contain.

		Manifests – This contains technical info so Android knows what the contents of the module are

		Java – This folder contains all the Java code that we write

		Java (generated) – This folder contains all of the Java code that Android Studio has generated automatically and generally should be left alone

		Assets, res, and res (generated) – These three folders all contain files and other data that the app may need to achieve a desired function, however most of these files are user added.

If some of these are missing, it may be something that just happens on your computer. As always, ask someone else if you believe you messed something up or something looks wrong. The most important folder is the java folder, so it is absolutely critical to have it.

Looking at Our CodeGraphical user interface, text, application, chat or text message

Description automatically generatedNow that you know where our code is located, on Android Studio, let’s explore how we keep our code clean and organized. Open the java folder.

Once it is open, you will see two more folders. One is com.xaverianteamrobotics.robottests and the other is org.firstinspires.ftc.teamcode. The first folder contains tests that allow us to automatically ensure that a certain algorithm behaves as intended. The second folder contains our actual code. Exploring the org.firstinspires.ftc.teamcode folder shows us this:

Graphical user interface, text, application, chat or text message

Description automatically generatedNow we’re getting somewhere! Believe it or not, we have entered the space where we can find actual code! It is organized into three sections: features, internal, and opmodes. The opmodes folder contains files called OpModes. For those who are new to the FTC competition, OpModes contain the code that actually makes the robot do things. The features folder contains different functions that can be recycled between OpModes. Examples of a feature include code for a drive train, an arm, or a grabber. The internal folder contains all of the code that we made that make everything happen behind the scenes.

Launching CodeNow that we know how to find code, let’s launch some sample code. At the top right of Android Studio, you can find the “Action Bar”. It contains, well, actions. Here is a quick breakdown from left to right:

		Run Actions

		The hammer icon: Build – Click to build the code, but don’t actually run it

		First drop-down: Action to run – By default it is TeamCode, meaning we want to run the TeamCode module.

		Second drop-down: Target device – The device to run the code on

		Play Button: Run – Run the selected action on the selected device

		Replay Icon (grayed out): Re-run – Re-run the selected action on the selected device

		The next five icons () are not necessary

		Stop Icon (grayed out): Stop the running code

		Git Actions

		Blue arrow: Update project – Download changes from the repository

		Green Check-mark: Commit – Commit any changes to the local copy of the repository

		Green Arrow: Push – Upload any commits that are not on the upstream repository

		Clock (grayed out): View history – See the history of the repository

		Backwards-facing arrow (grayed out): Rollback – Undo the changes to the last commit

		Settings

		You can disregard the other options () as they don’t really matter that much.

Now that we know how the action bar works, if you connect a Robot Controller and make sure that it is powered and turned on, once the light turns green you will see it in the target device drop-down. Once you do, click the play button, and at the bottom right you should see the following message:

Background pattern

Description automatically generated

This message means that your computer is now building the project to get it ready. It may take a while, sometimes up to 2 minutes. After it’s done, it will change to “Install”, and after 30 seconds you should see a notification saying “Launch Succeeded”. Once you see that, the launch has….succeeded.

Selecting Branches

At the bottom right of Android Studio, you can see your selected branch. For me it says “dev/muke” but for you it should say “master”. Click on it to open up the branch menu.

The branch menu displays each of the branches, separated by two categories: Local Branches and Remote Branches. Remote Branches do not exist on your computer, instead only existing on GitHub, which is the “remote” server in this case. Local Branches exist on your computer, and most often times correspond to a Remote Branch. For example, the local branch “master” corresponds to the remote branch “origin/master”.

Upon clicking on any of the currently active branch, you get these options:

Here are the options explained:

		New Branch from ‘…’: Create a new local branch using the current branch as the “template”. The new branch will be an exact copy of the current.

		Show Diff with Working Tree: Don’t worry about this

		Update: Receive any commits from the corresponding remote branch, if one exists. A blue arrow facing downwards next to this button indicates there is something to update.

		Push: Upload any commits to the corresponding remote branch, or create a remote branch if one doesn’t exist. A green arrow facing upwards next to this button indicates that commits are ready to be pushed.

		Rename: Rename the branches

The set of options are different if you select a local branch different to the one you are working on.

		Checkout: Set the branch to be the currently active branch. Note that any changes made in one branch will not carry over to another

		Checkout and Rebase onto ‘...’: Do not worry about this

		Compare with ‘…’: Show the difference in commits between the currently active branch and the selected branches

		Rebase ‘…’ onto ‘…’: Do not worry about this

		Merge ‘…’ into ‘…’: Copy any commits from the currently active branch to the selected branch.

		Delete: Deletes the branch

The options for a remote branch have many more options. However, the only option you should use is “Checkout” to reduce the possibility of messing something up. Note that “Checkout” in this instance would create a copy of the branch as a Local Branch before setting it as your active branch.

So what you should do is create a new branch from master, naming it “dev/” and your name, so “dev/tom” or “dev/colin” are some examples.

3 – Java BasicsIntroductionYou may have many questions, like “What is a Java?”, “How do I Java?”, or “How does this guy know all the questions I’m asking?”. Java is not that simple. Java is based around the mentality that everything is an object, or a philosophy known as Object-Oriented Programming. Think of an object like your phone. Literally, your phone is an object. Your phone has different apps. Your phone also has different properties like a phone number and a serial number. In Java, we could consider your phone as a class, which is a type of object. If your phone is a class, then the apps on it are methods and your phone number would be a field. Methods, like the apps on your phone, contain pieces of code that you can run. Fields are another way of saying variable, or some number or value that is necessary for a method. For those math guys, methods would be like , whereas a field would be . Also, when writing, at the end of every sentence you type, you must put a period at the end. In Java, it’s similar. You have to put a semicolon (;) at the end of every line otherwise Java will think that you never ended your “sentence”.

Data TypesJava is not just about numbers. To separate numbers from letters, variables have things called types. Whenever you declare a variable, you need to declare what type it is. This prevents you from doing something adding a number to a letter, or doing other things that could cause an error. A type can either be what is called a primitive or it can be a class. Primitives are just a fancy way of saying a class that Java has built in for us. Some examples are:

		int – An integer (any number between -∞ and +∞ without a decimal point)

		float – Any number with a decimal point

		double – Same as float, but can do basic arithmetic better

		boolean – True or False

		String – A string of letters

We can also use our custom classes as data types, and use instances of those classes as the value for our variables. If you use the phone analogy from the previous section, think of the model of phone you have as a type. For example, I have a Google Pixel 7. If Google Pixel 7 is the “type” of our “variable” then my specific phone would be in instance of that type. Let’s also say that you gave me an iPhone 14 and told me that it was my phone. I would give you an error because I can’t have an iPhone 14 because I only want a Google Pixel 7.

Creating a VariableWith that explanation out of the way, now would be a good time to show you how to create a variable. There are two ways we can do it. First, we can declare the variable and assign it a value all in one line, or we can just declare it and assign a value later. When we create a variable, we need to think about three things: 1) What will the type of my variable be? 2) What will I name my variable? 3) Do I want to assign it a value right away? Once you know the answers to all these three questions, we can create a variable. I asked those questions in a specific order, because let me answer it like this “I want to create a variable with the type of double that is named myVariable and set it equal to a value of 11.7”. Notice what I put in bold. If we put them together, we get how to declare a variable:

double myVariable = 11.7;

That was easy! Now, let’s create another one, but these time, we won’t assign a value.

double myVariable;

Creating variable is very easy and is one of the basic building blocks to learn Java, so it’s important to understand the process early on.

Methods – Creating and Using ThemMethods (sometimes called functions) allow us to create blocks of code which can be reused in many places without having to copy and paste. This allows us to change some problematic code in one place. Methods have 4 different properties you can change, which are the access modifier, return type, name, and parameters. The access modifier tells us where we can access this function. It can either be public or private. Public means we can access this function anywhere. Private prevents anything outside of the current class from accessing this method. The return type allows a method to return a variable. For example, say we had a function that added 2 and 1. The return type would be int, because 2 and 1 are whole numbers. If we don’t want to return anything, then we can put void as the return type. Parameters are like variables. They allow a method to take in a value. So, we can say that we want to create a function that triples a parameter. Let’s create an example of that function below:

public int triple(int x) {

	return x * 3;

}

Let’s go over that. First, we set the access modifier to public. Next, we specified a return type of int. Then we decided to name it triple. We gave it the parameter x with type int, and then we return triple of x. But how can we use this function? It is very simple, all we must know is the name, what parameters it needs, and what it returns.

int myVariable = triple(3);

We can also give a variable as a parameter:

int myNumber = 3;

int numberTripled = triple(myNumber);

In this case, numberTripled will be 9, because 3 tripled is 9.

Let’s make a function that has no return type:

public void doNothing() {

}

Now this function may seem useless, but functions that return void can be used to do things like save something in a file, print out a message, or drive a motor to a certain power.

Combining our Knowledge – ClassesClasses are the last thing that you need to learn before we can make our first OpMode. Classes are like methods. We can provide them with an access modifier and a name, but in the place of a return type we just put the word “class”. Here is how we define one.

public class MyClass {

}

What we’ve done is we created a class that is public (we can use it anywhere) and named it MyClass. It is important to note two things about naming classes. First, we must make sure that the name of the class matches the name of the file. Also, classes cannot begin with a number, math operator (+, -, =, etc.), hyphen (-), or underscore (_). But right now are class does absolutely nothing besides take up space on our computers. But let’s make add one method to our class, specifically the triple method we made earlier. To add it to our class, we simply add the method within the two curly braces, like so.

public class MyClass {

	public int triple(int x) {

		return x * 3;

	}

}

To use this method, we have to do two things. First, create an instance of the class, then call the method.

Using ClassesImage you are trying to call someone on a phone. Let’s image a phone as a class with one method: call. You can’t call someone on a phone that doesn’t exist, so you need to get a phone. In Java, we can create an instance of a class using the keyword new. So in our example class we made above, we could create a new instance with this snippet of code:

new MyClass();

What we did here is say we want to create a new instance of MyClass. We will explain later why the two parentheses at the end are needed.

But wait! How do we store this class in a variable? Easy. MyClass can be used as the type of a variable, so we could have this variable to store our precious instance of the class.

MyClass myClass = new MyClass();

Here Java breaks this statement down into 3 basic parts:

		We create a variable named myClass

		This variable has a type of MyClass

		We want to store a new instance of MyClass in the variable.

We can then call our function like this:

int tripledNumber = myClass.triple(3);

4 – OpModesExcerpts taken from online documentation

What are OpModes?OpModes, short for OperationModes, are the starting points of the program. There can be as many as one desires, and are selected from the driver station. They are defined in the TeamCode module in the opmodes folder. They are defined as a class that extends OperationMode and either implements TeleOperation or AutonomousOperation, depending on whether or not the code should be run in teleop or autonomous.

OperationModes consist of two main functions: construct() and run(). The construct() function is called once when the OperationMode is selected and the user pressed Init button the Driver Station.

The run() function is called repeatedly once the user presses the Play button until the user presses the Stop button.

See a blank sample on our online documentation

The Construct FunctionThe construct function in an OpMode serves as a “getting ready” phase. Here you might want to set any servos to their starting position, set the values of some variables, start the camera’s visual processing, and much more. The idea is it should contain anything you want to do once before the game actually starts.

The Run FunctionThe run function in an OpMode is the actual “meat” of the OpMode. The run function should follow a “short but sweet” mentality in that it shouldn’t take too long to run. If the function never quits, then background tasks can’t be run and the app will crash. To avoid this, we avoid adding any loops that would last forever.

EXERCISE – Creating a blank OpModeYour task is to create a blank OpMode named MyOpMode, based off of the sample above. The answer will be on the next page if you are stuck.

-----------------SOLUTION ON NEXT PAGE-----------------

EXERCISE ANSWERFirst we need to write the first line of the class, often called the header.

public class MyOpMode extends OperationMode implements 	TeleOperation {

This indicates we want to create a class named MyOperationMode which extends from OperationMode and is a TeleOperation.

Next we need to add our construct and run functions.

 public void construct() {

 }

 public void run() {

 }

Here is the whole thing.

public class MyOperationMode extends OperationMode implements 	TeleOperation {

 public void construct() {

 }

 public void run() {

 }

}

5 – Accessing Hardware DevicesWhat Hardware Devices are Available?The hardware devices available include but are not limited to:

		Motors

		Servos

		Controllers

		Distance Sensors

		Cameras

		Color Sensors

		etc.

How do we access these?There is a central class called Devices that can be used to access these devices.

Check out the following sections on our online documentation.

		https://robotics.xbhs.net/apis/Gamepads

		https://robotics.xbhs.net/apis/Servos

		https://robotics.xbhs.net/apis/motors

Because the Gamepads, servos, and motors are all static in the Devices class, we can access them without creating an instance of Devices.

So to access a button on a gamepad you can do:

Devices.gamepad1.getA();

The same thing applies to axes:

Devices.gamepad1.getLeftStickX();

Note that for the face buttons on the controller (A, B, X, Y), you can use either Xbox-style button names or PlayStation-style button names.

To set the value to a motor you can use:

Devices.motor0.setPower(100);

Where the 0 in “motor0” represents the port number of the motor, and the “100” represents the power level to set the motor to. The power can be between -100 and 100, where 0 means no motion.

--------------------WORK IN PROGRESS--------------------

VISIT robotics.xbhs.net FOR FURTHER READING

